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Abstract
In the present paper we present in detail a new and improved version of the
method of perturbative equivalence between the propagation characteristics
of lossless trapezoidal cross-section waveguides and of rectangular cross-
section waveguides. The analysis is carried out within the framework of
perturbation theory, and to the first order we develop a very simple geometrical
argument that allows one to construct for any given waveguide with trapezoidal
cross-section an equivalent waveguide with rectangular cross-section. The
numerical investigation of our arguments shows excellent agreement between
the propagation characteristics of the two equivalent structures.

PACS numbers: 42.60.Da, 42.81.Qb, 42.82.Et

1. Introduction

Trapezoidal cross-sections of semiconductor waveguides—besides specialized applications,
e.g. [1]—can be considered with reasonable accuracy to be the most common deviation from
the rectangular shape that occurs during the fabrication process of such devices. Indeed, and
unless special precautions that are very costly and time consuming are taken (e.g. as in the
case of the fabrication of length and height standards in AFM/STM and SEM), the production
manufacturing of waveguides will yield, in the general case, structures with profiles that deviate
from the rectangular shape. A discussion of the detailed reasons of why such deviations occur
is beyond the scope of the present paper, and therefore it will suffice to say that such deviations
occur mainly due to the various types of processes involved in the fabrication of the devices
(e.g. etching, crystalline plane selective etching, focused ion beam milling, etc).

Under these circumstances, the most frequently encountered deviations from the
rectangular geometry are cross-sections with shapes that can be approximated by trapezoidal
profiles with reasonable accuracy. Furthermore, and depending on the particular processes
involved in the manufacturing of the waveguides, these deviations can range—geometrically
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speaking—from negligible to rather substantial [2], and therefore, from the viewpoint of
semiconductor optical amplifier (SOA) modeling it is highly desirable for such models to have
control—even if at the simplest level—over the geometrical characteristics of the underlying
waveguide structure.

In the present paper we will present in detail a simple perturbative treatment of trapezoidal
cross-section waveguides that allows one to construct an equivalent rectangular cross-section
waveguide that has—to the first order of perturbation—the same propagation characteristics
as the original trapezoidal waveguide. The idea of reducing a trapezoidal waveguide to an
equivalent rectangular waveguide is by no means new and was originally proposed by Clark
and Dunlop [3] in 1988 for rib waveguide structures. In our present work, we apply this idea to
the study of strip-loaded waveguide structures, and we derive for this type of structures a very
simple and intuitive geometrical method to construct the equivalent rectangular waveguide
corresponding to a given trapezoidal waveguide.

One might argue that such a perturbative method for the construction of equivalent
waveguides has outlived its usefulness with the advent of modern numerical methods and
modern computers. This would indeed be a valid argument if one were to limit oneself only
to the study of electromagnetic waveguides. Indeed, more exact theoretical treatments of
trapezoidal waveguides exist in the literature [1, 4–6]—although not exceedingly many—
which can provide more accurate numerical results than the perturbative method presented
here.

However, if one considers the issue of the theoretical description of such waveguides in
the broader context of modern design and simulation of optical devices that may contain a
large number of SOAs in various operating configurations, one immediately realizes two very
important things. On one hand, almost all of the current models of SOAs in the literature
(and hence almost all the simulation software for SOA-based optical circuitry) are based
on rectangular geometries of the underlying waveguide structures, e.g. [7–9], and on the
other hand, current simulation software of SOA-based optical circuitry is complicated and
calculationally intensive and extensive enough as it is, such that the addition of another
numerical routine that analyzes accurately (i.e. non-perturbatively) the underlying waveguide
structure will only result in longer computational times, rendering such simulation software
even more time consuming.

With these considerations, the geometrical method for the perturbative construction of
equivalent rectangular waveguides that will be described in the present paper allows for a simple
generalization of the SOA models extant in the literature to include trapezoidal geometries,
and at the same time it allows one to continue to use the already available simulation software
(commercial and/or non-commercial) with little or no modification for the design and study
of SOA-based circuitry in a more realistic context.

While the purpose of our work is ultimately the generalization of SOA models to include
trapezoidal geometries of the underlying waveguide structure, the scope of the present paper
is limited to only the description of the perturbative equivalence of rectangular and trapezoidal
waveguides. As such, it constitutes the background for theoretical and numerical work which
will be reported in a subsequent paper.

The paper is organized as follows. In section 2 we review briefly the perturbative treatment
of rectangular waveguides, as a preparatory framework for the perturbative description
of the trapezoidal geometry that will be presented in detail in section 3. In section 4
we present the principle underlying the propagation equivalence between trapezoidal and
rectangular waveguides, and for the particular case of strip-loaded configurations we derive
a simple geometrical method for the construction of the equivalent rectangular waveguide
corresponding to a given trapezoidal geometry. In section 5 we present a numerical
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Figure 1. The cross-section of a strip-loaded waveguide structure, with its geometrical and physical
characteristics.

investigation of the trapezoidal and corresponding equivalent rectangular geometries, and
in section 6 we conclude the paper with a discussion of our results.

2. The perturbative treatment of strip-loaded rectangular waveguides

In this section we briefly review the perturbative modal analysis of rectangular waveguides,
with emphasis on the description of strip-loaded waveguide configurations which are the
structures of interest for our present work. Since the treatment is largely based on the work
done in [10, 11], for comparison and clarity reasons we will attempt in all of the following
to preserve as much as possible the same notations and diagrammatics that have been used in
these references.

The strip-loaded waveguide configuration is illustrated in figure 1 where the geometrical
characteristics of the waveguide are described by its width w and thickness t, and the physical
characteristics of the configuration are described by the dimensionless dielectric constants
n2

a, n
2
b and n2

c . The quantities na, nb and nc are respectively the refractive indices of the
‘cladding’, of the substrate and of the waveguide.

In the perturbative framework, this configuration is obtained from what will be called
in all of the following as the ‘fundamental’ rectangular waveguide configuration, i.e. from a
waveguide structure with identical geometrical dimensions, and a distribution of the dielectric
constant as illustrated in figure 2.

The use of an auxiliary configuration for the modal analysis of the strip-loaded waveguides
is due to the fact that the configuration in figure 2 is analytically solvable, and as such
it constitutes the appropriate starting point for the perturbative analysis of the structure in
figure 1. Indeed, it is well known from the elementary theory of dielectric waveguides (see
for example [12, 13]) that the solution of the Maxwell equations for dielectric waveguide
structures in the absence of loss and/or gain sources and for harmonic waves propagating
in the z-direction (i.e. in the direction perpendicular to the cross-sectional planes shown in
figures 1 and 2) can be functionally reduced to the solution of a single scalar-wave equation
of the form

∂2�(x, y)

∂2x
+

∂2�(x, y)

∂2y
+
[
k2

0n
2(x, y) − β2

0

]
�(x, y) = 0 (2.1)
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Figure 2. The cross-section of the ‘fundamental’ rectangular structure which constitutes the basis
of the construction of a strip-loaded waveguide in figure 1.

where �(x, y) can be any of the two fields corresponding to the propagation modes Ex
pq and

E
y
pq in the Marcatili notation [13, 14], k0 is the magnitude of the vacuum propagation vector

of the electromagnetic wave and n2(x, y) is the distribution of the (dimensionless) dielectric
function of the waveguide structure.

For the particular fundamental structure in figure 2, the distribution of the dielectric
constant can be written in the form

n2
0(x, y) = n2

1(x) + n2
2(y) − n2

c (2.2)

where n2
1(x) and n2

2(y) are given by the expressions

n2
1(x) =

{
n2

c, for |x| < w/2

n2
a, for |x| > w/2

(2.3)

n2
2(y) =

⎧⎪⎨
⎪⎩

n2
a, for y ∈ (−∞,−t)

n2
c, for y ∈ (−t, 0)

n2
b, for y ∈ (0,∞).

(2.4)

The coordinate separability of the dielectric constant distribution allows for the
separability of the scalar-wave equation (2.1), and by setting �(x, y) = X(x)Y(y), the latter
reduces to the following system of uncoupled linear differential equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d2X(x)

dx2
+
[
k2

0n
2
1(x) − β2

1

]
X(x) = 0

d2Y (y)

dy2
+
[
k2

0n
2
2(y) − β2

2

]
Y (y) = 0.

(2.5)

In (2.5), X(x) and Y(y) can be symmetric or antisymmetric functions of x and y respectively,
and the separation constants β1 and β2 must obey the condition

β2
0 = β2

1 + β2
2 − k2

0n
2
c . (2.6)
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Restricting ourselves only to the analysis of the Epq
x modes of the waveguide, and assuming

that the fields are harmonic inside the waveguide, evanescent in the material surrounding the
waveguide and symmetric with respect to the x coordinate, one can solve equations (2.5) in
a straightforward manner for each of the sectors that correspond to the distribution of the
dielectric constant in (2.3) and (2.4). The boundary conditions that are compatible with the
modal configuration chosen above are

n2�,
∂�

∂x
continuous at x = ±w/2

�,
∂�

∂y
continuous at y = 0,−t

(2.7)

and with these boundary conditions, it can be shown that the solutions of (2.5) are given by
the expressions

X(x) =
{

cos(k1xx), for |x| < w/2(
n2

c

/
n2

a

)
cos (k1xw/2) exp[−γ2x(|x|) − w/2], for |x| > w/2

(2.8)

Y (y) =

⎧⎪⎨
⎪⎩

C[cos(k4yt) + (γ3y/k4y) sin(k4yt)] exp[γ5y(y + t)], for y ∈ (−∞,−t)

C[cos(k4yy) − (γ3y/k4y) sin(k4yy)], for y ∈ (−t, 0)

C exp(−γ3yy), for y ∈ (0,∞)

.

(2.9)

with C a (normalization) constant that will be specified latter, and k1x, γ 2x, γ 3y, k4y and γ 5y

constants describing the harmonic part (k) and respectively the damped/evanescent part (γ )
of the solutions in the various sectors of the waveguide configuration, and are given by the
expressions

k2
1x = k2

0n
2
c − β2

1 γ 2
2x = β2

1 − k2
0n

2
a γ 2

3y = β2
2 − k2

0n
2
b

k2
4y = k2

0n
2
c − β2

2 γ 2
5y = β2

2 − k2
0n

2
a.

(2.10)

Besides the analytic expression of the solutions (2.8) and (2.9) of the system (2.5), the
boundary conditions also yield two transcendental equations for the constants β1 and β2:

arctan

(
n2

cγ2x

n2
ak1x

)
− k1x

w

2
+ pπ = 0

arctan

(
γ3y

k4y

)
+ arctan

(
γ5y

k4y

)
+ qπ = 0

(2.11)

whose (numerical) solutions for (p, q) ∈ N × N will determine the values β0(p, q) of the
propagation constant in the z-direction corresponding to the modes Epq

x of the electromagnetic
field.

Once the different propagation modes of the electromagnetic field have been determined
from the solutions of (2.11), propagation modes of the strip-loaded waveguide configuration
in figure 1 can be obtained in the perturbative framework [13] from the corresponding modes
of the fundamental waveguide configuration in figure 2 (and analyzed above) by considering
that the dielectric constant of the strip-loaded waveguide has the form

n2
SLW(x, y) = n2

0(x, y) + δn2
SLW(x, y) (2.12)

where n2
0(x, y) is given by (2.2) and δn2

SLW(x, y) is a (small) perturbation having the expression

δn2
SLW(x, y) =

{
n2

c − n2
a, for (x, y) ∈ [(−∞, w/2) ∪ (w/2,∞)] × [(−∞,−t) ∪ (0,∞)]

0, in rest.

(2.13)
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The perturbative approach described above has a very simple pictorial and physical
interpretation. What the dielectric constant perturbation (2.13) does is essentially to ‘remove’
the shaded regions of the structure in figure 2, such that the resulting structure becomes a
rectangular waveguide of the refractive index nc, grown on a substrate of the refractive index
nb and covered by a ‘cladding’ of the refractive index na, i.e. exactly the configuration shown
in figure 1. Of course, for such an approach to be valid, the refractive indices of the waveguide
structures must obey the conditions:

n2
a � ∣∣n2

c − n2
a

∣∣, n2
b � ∣∣n2

c − n2
a

∣∣ , (2.14)

which, fortunately, are almost always satisfied in the cases of practical interest.
Under these circumstances, to the first order of perturbation, the propagation constant of

the strip-loaded waveguide depicted in figure 1 is given by the expression

β2
SLW = β2

0 + δβ2
SLW (2.15)

where β0 is the propagation constant of the fundamental structure in figure 2, and δβ2
SLW is the

first-order correction to the β0 corresponding to the perturbation δn2
SLW(x, y) of the dielectric

constant in (2.13). The correction δβ2
SLW in (2.15) is given by the familiar general expression

from perturbative calculus:

δβ2
SLW = (

k2
0

/
C
) ∫ ∫

R2
δn2

SLW(x, y)|�(x, y)|2 dx dy (2.16)

with �(x, y) the full solution of the fundamental waveguide as given by (2.8) and (2.9),
and with C the normalization constant—which is the same constant appearing in the separate
solution (2.9)—having the expression

C =
∫ ∫

R2
|�(x, y)|2 dx dy. (2.17)

Using (2.8) and (2.9), both the first-order correction (2.16) and the normalization constant
in (2.17) can be calculated exactly, and their analytic expressions are given for reference
purposes in appendix A.

3. The perturbative treatment of strip-loaded trapezoidal waveguides

Following a methodology similar to that used in the construction of the strip-loaded rectangular
waveguide structure in figure 1 from the fundamental waveguide structure in figure 2, the
strip-loaded trapezoidal waveguide depicted in figure 3 can be obtained from the strip-loaded
rectangular waveguide structure in a straightforward manner.

The ‘wings’ of the trapezoidal structure are added to the rectangular waveguide by
considering an additional perturbation δn2

T (x, y) in the dielectric constant of the latter such
that the refractive index of these ‘wings’ is changed from na to nc. The perturbation δn2

T (x, y)

that changes the refractive index of the domains (AED) and (BCF) in figure 3 from na to nc

has the expression

δn2
T(x, y) =

{
n2

c − n2
a, for (x, y) ∈ �(AED) ∪ �(BCF)

0, in rest
. (3.1)

Under these circumstances, to the first order of (overall) perturbation, the propagation
constant βT of the trapezoidal waveguide structure in figure 3 will be given by the expression

β2
T = β2

0 + δβ2
SLW + δβ2

T (3.2)

where the first-order correction δβ2
T has the general form

δβ2
T = (

k2
0

/
C
) ∫ ∫

R2
δn2

T(x, y)|�(x, y)|2 dx dy (3.3)
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Figure 3. The cross-section of the trapezoidal waveguide obtained from the strip-loaded rectangular
structure by adding the ‘wings’ (AED) and (BCF) with the refractive index nc.

with all the symbols having the same significance as in (2.16). Analogous to the first-order
correction in (2.16), the correction in (3.3) can also be calculated exactly, and its analytic
expression is given for reference purposes in appendix B.

4. The perturbative propagation equivalence of the trapezoidal and rectangular
strip-loaded waveguides

As was mentioned in section 1, it is possible to construct for any given trapezoidal waveguide,
an equivalent rectangular waveguide that has to the first order of perturbation the same
propagation constant as the original trapezoidal waveguide. The method underlying this
construction was first developed in [3], and was briefly investigated numerically for the case
of rib-waveguide structures1. In this section, we apply this method to the study of strip-loaded
waveguide structures, and we show that in this latter case it yields a very simple geometrical
criterion that allows one to construct the equivalent rectangular waveguide without recourse
to any numerical calculations. The construction of the equivalent rectangular waveguide can
be diagrammatically illustrated as in figure 4.

The fundamental idea behind the construction of an equivalent waveguide can be described
as follows. Given the trapezoidal waveguide DEFC with the distribution of the refractive index
as shown in figure 4, one constructs a rectangular waveguide GIMJ that has the same thickness
t as the original trapezoidal waveguide and a width that has yet to be determined. The
rectangular waveguide is constructed using the same method that was used in the previous
sections, i.e. by appropriately perturbing the dielectric constant of the trapezoidal waveguide
configuration, and the perturbation term corresponding to this construction has the general
form

δn2
ER(x, y) =

⎧⎪⎨
⎪⎩

n2
c − n2

a for (x, y) ∈ �(HID) ∪ �(CMK)

−(
n2

c − n2
a

)
for (x, y) ∈ �(HEG) ∪ �(JFK)

0, in rest

. (4.1)

1 In the dedicated nomenclature, a rib-waveguide structure is a waveguide structure in which the waveguide and
the substrate have the same refractive index/dielectric constant by contrast to the strip-loaded structures where the
waveguide and the substrate have different refractive indices.
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Figure 4. The construction of the equivalent rectangular waveguide GIMJ corresponding to the
trapezoidal waveguide DEFC.

The perturbation (4.1) in the dielectric constant corresponds to a first-order correction
δβER to the propagation constant of βT of the trapezoidal waveguide having the general form

δβ2
ER = (

k2
0

/
C
) ∫ ∫

R2
δn2

ER(x, y)|�(x, y)|2 dx dy

= 2k2
0

(
n2

c − n2
a

)
C

{∫ ∫
SHID

|�(x, y)|2 dx dy −
∫ ∫

SHEG

|�(x, y)|2 dx dy

}
(4.2)

where the factor of 2 in the last equality on the rhs of (4.2) is once again due to the symmetry
of the problem with respect to the y-axis, and with this correction the propagation constant of
the rectangular waveguide GIMJ will be given to the first order by the expression

β2
ER = β2

0 + δβ2
SLW + δβ2

T + δβ2
ER = β2

T + δβ2
ER. (4.3)

Due to the fact that the first-order correction δβ2
ER in (4.2) is given by the difference of two

integrals, and since these two integrals will depend on the width of the rectangular waveguide
GIMJ, it is possible to make this difference vanish by appropriately choosing the width of the
waveguide. The vanishing of this difference implies the vanishing of the first-order correction
δβ2

ER, and consequently, it follows from (4.3) that to the first order the propagation constant
βER of the rectangular waveguide GIMJ will be equal to the propagation constant βT of the
original trapezoidal waveguide DEFC.

This is the essence of the equivalent rectangular waveguide method; given a trapezoidal
waveguide, one can construct an equivalent rectangular waveguide that has, to the first order, the
same propagation constant as the original trapezoidal waveguide. The equivalent rectangular
waveguide has the same thickness as the trapezoidal structure, and its width can be determined
from the condition that the first-order correction (4.3) to the propagation constant vanishes.
Indeed, by rewriting the latter condition in the more convenient form∫ ∫

SHID

|�(x, y)|2 dx dy −
∫ ∫

SHEG

|�(x, y)|2 dx dy = 0 (4.4)
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the two double integrals on the lhs of (4.4) can be calculated in a closed analytical form2 and
in doing so, one obtains a non-linear/transcendental equation whose unknown is the width of
the equivalent rectangular waveguide and which can be solved numerically.

For the particular case of strip-loaded waveguide structures depicted in figure 4, one
can avoid to solve equation (4.4) altogether by observing that �(x, y) has the same analytic
expression on both integration domains SHID and SHEG in the two double integrals on the lhs
of (4.4). Under these circumstances, (4.4) can be formally written as∫ ∫

SHID−SHEG

|�(x, y)|2 dx dy = 0 (4.5)

and it is not difficult to see that the integral in (4.5) will always vanish if the (areas of the)
integration domains SHID and SHEG obey the condition

SHID = SHEG. (4.6)

Furthermore, straightforward symmetry arguments allow one to re-express the condition
(4.6) into a more geometrically meaningful form:

�(HID) ≡ �(HEG), (4.7)

which requires the congruence of the two triangles bounding the integration domains SHID

and SHEG, and this latter condition eliminates completely the need for numerically solving
(4.4) by allowing one to determine the width of the equivalent rectangular waveguide from
simple geometrical considerations. Indeed, it is not difficult to see from figure 4 that condition
(4.7) implies that EG = GA, and under these circumstances, the width w′ of the equivalent
waveguide corresponding to a trapezoidal waveguide with the small base w and the large base
L will be given by the expression

w′ = w + L

2
. (4.8)

To summarize all the above considerations, given a trapezoidal waveguide of thickness
t, small basis w and large basis L, with propagation modes determined perturbatively as
described in the previous sections, it is possible to construct rectangular waveguide that has
to the first-order of perturbation the same propagation constant (3.2)–(3.3) as the original
trapezoidal waveguide. The equivalent rectangular waveguide has the same thickness as
the trapezoidal waveguide, and its width (4.8) can be determined exactly from the simple
geometrical condition (4.7) derived from the requirement that the two waveguides have the
same propagation constant.

It should be noted that while the geometrical condition (4.7) and hence the expression (4.8)
for the width of the equivalent rectangular waveguide were determined for the simpler case
of an isosceles trapezoidal waveguide, the method described above can be easily generalized
to the case of asymmetric trapezoidal waveguides. Indeed, in this latter case one only needs
to apply separately condition (4.7) to each of the two (non-equal) wings of the trapezoidal
profile, and the result will be an equivalent rectangular waveguide that is ‘off-center’, i.e. a
rectangular waveguide whose vertical symmetry axis is displaced toward the ‘wider’ wing of
the trapezoidal profile.

In view of the above propagation equivalence of the two waveguide structures, there is
another way to determine the propagation constant of the equivalent rectangular waveguide

2 Note that the authors of [3] appear to have chosen to solve (4.4) for their particular application by using a numerical
method that involves the numerical integration of the two terms on the lhs of (4.4). Such a method is unnecessary in
the opinion of the present authors, since for the geometries of interest—both in their case and ours—these integrals
can be calculated analytically in a rather straightforward manner. Needless to say, the analytical calculation of these
integral is always more desirable, since it eliminates any errors associated with numerical integration.
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that avoids the direct calculation of the propagation constant of the trapezoidal structure, and
as such it is much simpler.

Referring to figure 4, the equivalent rectangular waveguide GIMJ can be constructed
directly from the rectangular waveguide ABCD by simply ‘adding’ perturbatively to the latter
the lateral wings GADI and JBCM. The perturbation in the dielectric constant of the structure
in figure 2 that is necessary for this operation is given by the expression

δn2
ERD(x, y) =

{
n2

c − n2
a, for (x, y) ∈ SGADI ∪ SJBCM

0, in rest
(4.9)

and the corresponding first-order correction to the propagation constant βSLW in (2.15) and
(2.16) will be given by the general expression

δβ2
ERD = (

k2
0

/
C
) ∫ ∫

R2
δn2

ERD(x, y)|�(x, y)|2 dx dy

= k2
0

(
n2

c − n2
a

)
C

{∫ ∫
SGADI

|�(x, y)|2 dx dy +
∫ ∫

SJBCM

|�(x, y)|2 dx dy

}

= 2k2
0

(
n2

c − n2
a

)
C

∫ ∫
SGADI

|�(x, y)|2 dx dy (4.10)

where once more we have used the symmetry of the structures in figure 4 with respect to the
y-axis in order to write the last equality in (4.10). It should be noted at this time that since
the integration domains in (4.10) are rectangular, the analytical calculation of this correction
is much simpler than the corresponding calculations for the correction term δβ2

T. The explicit
expression of the correction term in (4.10) is given for reference in appendix C, and with
this correction term, the propagation constant of the equivalent rectangular waveguide will be
given by the expression

β2
ERD = β2

0 + δβ2
SLW + δβ2

ERD = β2
SLW + δβ2

ERD. (4.11)

The above expression for the propagation constant of the equivalent rectangular waveguide
together with the corresponding expression in (4.3) will be used in the next section to test the
numerical accuracy of this equivalence.

We conclude this section with a few considerations regarding the overall method we
have used for the construction of the trapezoidal waveguide and for studying its propagation
equivalence with the rectangular waveguide.

It should be mentioned that one could have used a different perturbative approach [3] to
the construction of a trapezoidal waveguide from a ‘fundamental’ rectangular waveguide that
involves the calculation of fewer correction terms. Such a method is illustrated in figure 5,
and in a certain sense it represents the inverse of the method we have used so far.

The strip-loaded waveguide ABCD is obtained as before from a ‘fundamental’ rectangular
waveguide of the type depicted in figure 2, and is considered to be already the ‘equivalent’
waveguide. The trapezoidal structure EGHF (whose geometrical dimensions are supposed to
be known) is then constructed from the waveguide ABCD as indicated in figure 2, and the
entire construction needs to satisfy the condition that the width of the rectangular structure
should be smaller than the small basis GH of the trapezoidal profile. It should be noted that in
this approach the width of the rectangular waveguide is unknown, and as such it will appear
as a parameter in all the calculations (e.g. general form of the solutions, boundary conditions
and more importantly, modal equations) required for the construction of this structure from a
‘fundamental’ structure of the type illustrated in figure 2.

The explicit value of this width will be determined from the requirement that the two
waveguide structures have the same propagation constant to the first order of perturbation, and
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Figure 5. Alternative construction of a trapezoidal waveguide from the strip-loaded waveguide
configuration in figure 1.

this requirement will result in an equation similar to (4.4). However, due to the above
considerations, this equation will be extremely complicated and will necessarily require
numerical methods for its solutions. Furthermore, since the width also determines the ‘vertical’
modes of the waveguide, and since the corresponding modal equation in (2.11) also requires
numerical solutions, one has, in fact, to solve numerically not a single equation but a system
of transcendental equations.

For these reasons, and as explained in section 1, we have chosen not to use such an
approach, but instead we have decided to use the approach described in the present and earlier
sections, which has the major advantage that it offers a simple and exact method for the
determination of the width of the equivalent rectangular waveguide that does not require any
numerical calculations.

5. Numerical results and discussion

For the numerical investigation of the theoretical consideration presented in the previous
settings, we have chosen two trapezoidal waveguide structures, which for notational simplicity
have been labeled as T1 and T2. Both these trapezoidal structures are geometrically similar,
in the sense that they are structures with the same w, same angle for the sides (32◦) but
different heights. The explicit geometrical and physical properties of these two structures
are as follows. For T1 we have chosen w = 2 µm, t = 0.73 µm, L = 4.34 µm, for T2 we
have chosen w = 2 µm, t = 1.07 µm, L = 5.42 µm, and both waveguide configurations
have refractive index distributions that are specific to InP/InGaAsP SOA structures [9], i.e.
na = 1, nb = 1.538, nc = 1.568. The dimensions and physical properties of the equivalent
rectangular structures corresponding to T1 and respectively T2 can easily be determined by
using the arguments presented in the previous sections. All the results that will be presented
in the following are based on the analytical considerations presented in the previous sections
and in the corresponding appendices, and all the numerical calculations involved in obtaining
these results have been performed using MathCad 2000 Professional.

As a first test of the validity and accuracy of the propagation equivalence between
trapezoidal waveguides and their rectangular counterparts we have considered the dispersion
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Figure 6. Dispersion curves for the trapezoidal structure T1 (continuous line) and its equivalent
rectangular structure (trapezoidal marker). The modes (p, q) are indicated above each pair of
curves.

Figure 7. Dispersion curves for the trapezoidal structure T2 (continuous line) and its equivalent
rectangular structure (trapezoidal marker). The modes (p, q) are indicated above each pair of
curves.

data β/k versus k for various propagation modes (p, q) of these structures. Since from the
theoretical standpoint the dominant mode for trapezoidal waveguides is the (1, 1) mode [1],
and since from the experimental viewpoint it appears that the (1, 1) mode is the lowest mode
supported by such structures [5], we have restricted our numerical analysis only to propagation
modes with p, q � 1. Explicitly, we have chosen for our investigation the modes with p = 1,
2, 3 and q = 1, and we have compared the dispersion curves βT/k versus k of the structures T1

and T2 with the dispersion curves βERD/k versus k of the corresponding equivalent rectangular
structures.

The results are presented in figures 6 and 7, and as it can be seen from these figures,
for both structures T1 and T2 the dispersion curves for the modes under consideration are in
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Figure 8. Relative error with which the equivalent rectangular waveguides reproduce the dispersion
curves of the trapezoidal structures T1 (continuous line) and T2 (dotted line). The modes (p, q)

are indicated above each pair of curves.

excellent agreement with the corresponding dispersion curves of their respective equivalent
rectangular counterparts.

For each mode, the dispersion curves practically overlap, and the overlapping
precision/relative error per point is illustrated in figure 8.

From the analysis of figure 8 one can draw the following conclusions. First of all,
the accuracy with which the equivalent rectangular waveguides reproduce the dispersion
curves of the trapezoidal waveguides is the highest for the dominant mode (1, 1) and
decreases for higher modes. In particular, for the modes under consideration, the maximum
overlapping error increases by about one order of magnitude with increasing order p of the
mode, reaching the value of 2.4465% (not shown in the graph) for the mode (3, 1) of the
structure T1.

Second, the overlapping error for each mode is larger for the structure T1 than for
the structure T2, suggesting that since the two structures are geometrically similar as
mentioned earlier, the overlapping error decreases with increasing thickness t of the waveguide
structure.

Finally, the overlapping error for each mode decreases significantly with increasing
wavenumber k, in the sense that for each of the structures T1 and T2 the overlapping error at
high values of k becomes at least two orders of magnitude smaller than the maximum error of
the respective mode.

As a second test of the validity and accuracy of the propagation equivalence between
trapezoidal waveguides and their rectangular counterparts we have considered the data
describing the variation of the effective refractive index β/k for the various propagation
modes (p, q) of these structures with respect to the size L of the large basis of the trapezoidal
structures. Explicitly, we use the same propagation modes as before, and for each mode
we compare the curves βT/k versus L of the structures T1 and T2 with the curves βERD/k
versus L of the corresponding equivalent rectangular structures. In all of the following, for
notational simplicity, we will continue to use the notation T1 and T2 to designate the two
(sets of) trapezoidal structures under consideration, with the implicit understanding that with
the exception of the value of the large basis L of these structures, all the other geometrical
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Figure 9. Plot of the curves βT/k versus L for the structures T1 and the curves βERD/k versus L for
the corresponding equivalent rectangular structures. The modes (p, q) are indicated above each
pair of curves.

Figure 10. Plot of the curves βT/k versus L for the structures T2 and the curves βERD/k versus
L for the corresponding equivalent rectangular structures. The modes (p, q) are indicated above
each pair of curves.

and physical properties of these structures remain unchanged and have the values mentioned
earlier.3

The results are presented in figures 9 and 10 and very much like in the case of the
dispersion curves, the curves of the equivalent rectangular structures are in excellent agreement
with the corresponding curves of the trapezoidal structures T1 and T2 respectively.

3 Under these circumstances, the difference between the two set of structures T1 and T2 (and of course the difference
between the corresponding equivalent waveguides) lies—apart from the variation of the size L of the large basis of
the structures—in the different thicknesses t of these structures. According to the considerations in the beginning
of the present section, the structures T1 are characterized by a thickness t = 0.73 µm, while the structures T2 are
characterized by a thickness t = 1.07 µm.
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Figure 11. Relative error with which the equivalent rectangular waveguides curves βERD/k versus
L reproduce the curves βT/k versus L of the trapezoidal structures T1 (continuous line) and T2
(dotted line). The modes (p, q) are indicated above each pair of curves.

For each of the modes under consideration, the overlapping precision/relative error per
data point is illustrated in figure 11.

The conclusions drawn from the analysis of figure 11 are similar in trend to those obtained
from the analysis of figure 8. Indeed, as it can be seen from figure 11, the accuracy with which
the equivalent rectangular waveguides reproduce the dispersion curves of the trapezoidal
waveguides is the highest for the dominant mode (1, 1) and decreases for higher modes,
the overlapping error for each mode is larger for the structures T1 than for the structures T2

suggesting that the error increases with increasing thickness t of the waveguide structure, the
maximum overlapping error increases with increasing order p of the mode and the overlapping
error for each mode decreases with increasing wavenumber k.

However, it should be noted that while the graphs in figures 11 and 8 show similar
qualitative trends, quantitatively they are different in at least one significant aspect. The most
important difference rests with the maximum error for the higher modes, and it is clear that
for both sets of structures T1 and T2 the maximum error is smaller in figure 11 than in figure 8.

The reduction in the maximum error for these modes is by a factor of approximately 2
for the (2, 1) mode and approximately 6 for the mode (3, 1). Interestingly enough, for the
dominant mode (1, 1) the maximum error has essentially the same value in both graphs. Under
these circumstances, we can safely say that the equivalent rectangular structures reproduce the
curves βT/k versus L of the corresponding trapezoidal structures more accurately than they
reproduce the dispersion curves βT/k versus k.

It should also be noted that the curves in figure 11 show a particularly interesting and
important feature, namely the fact that for each mode, as the size of the large basis L decreases,
the overlapping error reaches a maximum value followed by a rapid drop to zero as L approaches
the value of the small basis w of the trapezoidal structures.

The rapid drop to zero of the overlapping error as L approaches w has a very intuitive
and natural geometrical explanation, representing in fact a proof of validity for our method.
Indeed, referring to figure 4, as the size L of the large basis of the trapezoidal structures
approaches the value of the small basis w of these structures, one would expect that both the
trapezoidal structures DEFC and the corresponding equivalent rectangular structures GIMJ
would approach the geometry and size of the structure ABCD. When L = w, all these three
structures should become identical, under which circumstances they should all be characterized
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by the propagation constant βSLW of the waveguide ABCD. As it can be seen from figure 11,
this intuitive line of reasoning is fully supported by the numerical results, and needless to say,
it is also fully supported by the analytic results presented in the previous sections and in the
appendices. Indeed, it is not difficult to verify that for L → w both first-order corrections δβT

and δβERD approach zero, such that in the limit L = w we obtain βT = βERD = βSLW, i.e.
we recover the intuitive geometrical result described above that in this limit both structures
DEFC and GIMJ become identical to—and will have the same value βSLW for the propagation
constant as—the structure ABCD.

However, the above-mentioned feature that is important for the purpose of our present
work—and surprising at the same time—is not the rapid drop to zero of the overlapping error
as L → w, but rather the existence of a global maximum of this error for each mode. The
existence of such a global maximum is extremely important indeed, because it offers for each
propagation mode an overall lower bound for the accuracy with which the present method can
be applied to the description of the propagation characteristics of trapezoidal waveguides.

Summarizing the considerations and results in this section, the error with which the
perturbative propagation equivalence method developed in the present paper reproduces the
propagation characteristics of trapezoidal waveguides depending on the geometrical properties
of these waveguides, the wavevector k of the radiation propagating through it and the
propagation mode under consideration. Typical values for this error range from below 0.05%
for the dominant mode of the waveguide to approximately 3% for the highest mode that has
been investigated, and based on these results we can conclude with confidence that this method
offers a highly accurate alternative for the description of the propagation characteristics of
lossless trapezoidal waveguides.

6. Conclusions

In the present paper we have considered the method of first-order propagation equivalence
between trapezoidal and rectangular strip-loaded waveguides, and we have developed a new
and improved version of this method. The version we have developed has the advantage
of being much simpler both at the conceptual level and at the mathematical level. At the
conceptual level it offers an extremely simple geometrical method for the (perturbative)
construction of a propagationally equivalent rectangular structure for any given trapezoidal
waveguide, while at the same time it allows for a mathematical description that is mostly
analytical and requires only minimal use of numerical analysis methods. The numerical
investigation carried out to test the accuracy of our method shows it to be in excellent
agreement with the perturbative description of trapezoidal waveguides, confirming the validity
of our approach.

It should be noted that while the work carried out in this paper has been restricted only
to the description of lossless trapezoidal waveguides, it can be straightforwardly generalized
to include the effects of material loss by considering complex propagation constants β and by
carrying out the calculations in the complex plane. Under these circumstances, the method
can be applied to the study of the properties of SOAs with trapezoidal cross-sections, which
is an issue that will be addressed in a future paper.

It is also very important to emphasize that mathematical description aside, the present
work has important and immediate applications in the numerical modeling of optoelectronic
devices. In particular, it is especially useful for extending the applicability range of already
existing commercial simulation software—which generally relies on models of rectangular
cross-section devices—to include structures whose cross-section is trapezoidal, allowing for
more accurate designs of complex optoelectronic systems.
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Appendix A. The normalization constant and the first-order correction δβ2
SLW for the

strip-loaded rectangular waveguide

As mentioned in section 2, the normalization constant C required for the quantitative evaluation
of the first-order correction to the propagation constant β0 is given by the general expression

C =
∫ ∫

R2
|�(x, y)|2 dx dy (A.1)

where the integral is over the entire two-dimensional surface containing the waveguide cross-
section, and �(x, y) is the full solution of the scalar-wave equation (2.1) as determined by
(2.8) and (2.9).

The calculation of the normalization constant is quite straightforward, and requires the
splitting of the double integral in (A.1) into several integrals corresponding to the expressions
of the solution �(x, y) on the various spatial domains of relevance. Under these circumstances,
it can be shown that in fact we can write

C =
9∑

i=1

Ji (A.2)

where the terms/integrals Ji on the rhs of (A.2) have the expressions

J1 =
∫ −w/2

−∞
dx

∫ −t

−∞
dy|�(x, y)|2 = D2

12

4γ2xγ5y

(A.3)
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J3 =
∫ −w/2

−∞
dx
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0
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4γ2xγ3y

(A.5)
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∫ w/2
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J6 =
∫ w/2

−w/2
dx
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0
dy|�(x, y)|2 = 1

4γ3y

[
w +

sin (k1xw)

k1x

]
(A.8)

J7 =
∫ ∞

w/2
dx

∫ −t

−∞
dy|�(x, y)|2 = J1 (A.9)

J8 =
∫ ∞

w/2
dx

∫ 0

−t
dy|�(x, y)|2 = J2 (A.10)

J7 =
∫ ∞

w/2
dx

∫ ∞

0
dy|�(x, y)|2 = J3 (A.11)

where in (A.3)–(A.11) we have used the notations
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D1 =
(

nc

na

)2

cos

(
k1xw

2

)
(A.12)

D2 = cos(k4yt) +

(
γ3y

k4y

)
sin(k4yt) (A.13)

D12 = D1D2. (A.14)

It should be noted at this time that the results for J7 −J9 in (A.9)–(A.11) reflect the
symmetry of the solutions of the scalar-wave equation with respect to the x-axis, and under
these circumstances (A.2) can be rewritten in the simpler form

C = 2 (J1 + J2 + J3) + J4 + J5 + J6. (A.15)

With these considerations, one can immediately calculate the first-order correction to the
propagation constant β0. According to (2.16), the general form for this correction term is
given by the expression

δβ2
SLW = (

k2
0

/
C
) ∫ ∫

R2
δn2

SLW(x, y)|�(x, y)|2 dx dy (A.16)

and by using the explicit form (2.13) of the perturbation in the dielectric constant, it can be
shown that (A.16) can be written in the form

δβ2
SLW = 2k2
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. (A.17)

Appendix B. The first-order correction to δβ2
T for the strip-loaded trapezoidal

waveguide

The first-order correction δβ2
T has the general form

δβ2
T = (

k2
0

/
C
) ∫ ∫

R2
δn2

T(x, y)|�(x, y)|2 dx dy (B.1)

where the perturbation in the dielectric constant δn2
T(x, y) is given by (3.1), and the full

solution �(x, y) of the scalar-wave equation is obtained from (2.8) and (2.9). Using now the
explicit from of δn2

T(x, y), (B.1) can be rewritten in the form

δβ2
T = k2

0

(
n2

c − n2
a

)
C

{∫ ∫
SAED

|�(x, y)|2 dx dy +
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}
(B.2)

where SAED and SBCF are the areas of the surfaces bound by the triangles �(AED) and
respectively �(BCF). Using the symmetry properties of the full solutions �(x, y) with respect
to the y-axis, it follows immediately that if �(AED) ≡ �(BCF)—i.e. if the trapezoidal cross-
section in figure 3 is also symmetric with respect to the y-axis—then the rhs of (B.2) can be
further simplified such that the expression of the first-order correction δβ2

T becomes

δβ2
T = 2k2

0

(
n2

c − n2
a

)
C

∫ ∫
SAED

|�(x, y)|2 dx dy. (B.3)

In order to be able to calculate analytically the surface integral on the rhs of (B.3), it is
necessary to rewrite it with the appropriate integration limits corresponding to the geometry of
the surface SAED. This is not very difficult to do, and it can be shown that in fact the integration
limits in the surface integral are explicitly∫ ∫

SAED

|�(x, y)|2 dx dy =
∫ −w/2

−L/2
dx

∫ ax+b

−t

dy|�(x, y)|2 (B.4)
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where y = ax + b is the equation of the side DE of the triangle �(ADE). Using simple analytical
geometry, it can be shown that the coefficients a and b that appear in the equation of the line
DE have the expressions

a = 2t

L − w
, b = wt

L − w
. (B.5)

With (B.5), and after a few mathematical manipulations, the expression for the correction
δβ2

T can be put in the final form for the present purposes:

δβ2
T = 2k2

0D
2
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where the terms Kj of the sum on the rhs of (B.6) have the expressions
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Appendix C. The direct calculation of the propagation constant βERD for the equivalent
rectangular waveguide

As mentioned in section 4, the propagation constant of the equivalent rectangular waveguide
GIMJ in figure 4 can be calculated directly by using the relation

β2
ERD = β2

0 + δβ2
SLW + δβ2

ERD = β2
SLW + δβ2

ERD (C.1)

where β2
SLW is given by (2.15)–(2.17) and the correction term δβ2

ERD is given by the expression
in (4.10):

δβ2
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|�(x, y)|2 dx dy. (C.2)

The integral on the rhs of (C.2) can be calculated straightforwardly in a closed analytical
form, and it can be shown that eventually the first-order correction δβ2

ERD is given by the



14574 E M Popescu and S Song

expression
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where the normalization constant C and D1 are given in explicit form in appendix A.

References

[1] Xu F, Zhao K, You B and Lin X 2000 Int. J. Infrared Millim Waves 21 45
[2] Kitamura S, Komatsu K and Kitamura M 1998 IEEE Photonics Technol. Lett 6 173
[3] Clark D F and Dunlop I 1967 Electron. Lett 24 1414
[4] Muilwyk C A and Davies J B 1967 IEEE Trans. Microw. Theory Tech. 15 450
[5] Pelosi P M, Vandenbulcke P, Wilkinson C D W and De La Rue R M 1978 Appl. Opt. 17 1187
[6] Miyamoto T 1980 Opt. Commun. 34 35
[7] Gillner L 1992 IEE Proc.-J. 139 339
[8] Marcuse D 1983 IEEE J. Quantum Electron. 19 63
[9] Connelly M J 2001 IEEE J. Quantum Electron. 37 439

[10] Kumar A, Thyagarajan K and Ghatak A K 1983 Opt. Lett. 8 63
[11] Varshney R K and Kumar A 1988 J. Lightwave Technol. 6 601
[12] Marcuse D 1981 Theory of Dielectric Optical Waveguides 2nd edn (Edinburgh: Academic)
[13] Adams M J 1981 An Introduction to Optical Waveguides (New York: Wiley)
[14] Marcatili E A J and Miller S E 1969 Bell Syst. Tech. J. 48 2161

http://dx.doi.org/10.1023/A:1006638803548
http://dx.doi.org/10.1109/68.275419
http://dx.doi.org/10.1049/el:19880966
http://dx.doi.org/10.1109/TMTT.1967.1126502
http://dx.doi.org/10.1016/0030-4018(80)90154-6
http://dx.doi.org/10.1109/JQE.1983.1071725
http://dx.doi.org/10.1109/3.910455
http://dx.doi.org/10.1109/50.4042

	1. Introduction
	2. The perturbative treatment of strip-loaded rectangular waveguides
	3. The perturbative treatment of strip-loaded trapezoidal waveguides
	4. The perturbative propagation equivalence of the trapezoidal and rectangular strip-loaded waveguides
	5. Numerical results and discussion
	6. Conclusions
	Appendix A. Appendix A. The
	Appendix B. Appendix B. The
	Appendix C. Appendix C. The
	References

